¹Evolution of fungicide residues in pruned vine-²shoots

3

4Cristina Cebrián-Tarancón¹, Rosario Sánchez-Gómez¹, José Oliva², Miguel Angel Cámara², Amaya Zalacain¹, Maria 5Rosario Salinas¹, *

6

7ºCátedra de Química Agrícola, E.T.S. de Ingenieros Agrónomos y de Montes, Universidad de Castilla-La Mancha, 8Avda. España s/n. 02071, Albacete, Spain

9²Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Universidad de Murcia, Campus de **10**Espinardo s/n, 30100, Murcia, Spain

11

12*corresponding author: rosario.salinas@uclm.es

13**Abstract**

14

15Pruned vine-shoots used as wine additives have proven to be a useful tool for improving and differentiating wines. This 16is because they accumulate substances from the plant itself, which later, as a result of the toasting process, express their 17greatest oenological potential. However, vine being one of the crops subject to the most phytosanitary treatments, 18including fungicides in particular, it can be assumed that their residues will accumulate in the vine-shoots and pass into 19the wine. The aim of this study was to determine the content in pruned vine-shoots of four of the main fungicides 20applied in the vineyard in Spain: trifloxystrobin, boscalid, kresoxim-methyl and penconazole. In order to do so, a 21HPLC-MS/MS method was developed, which showed high reliability given its adequate validation parameters. The 22method was linear for the concentration range studied, LOD was 0.003 mg/kg and LOQ was 0.01 mg/kg, which comply 23with the control criteria.

24The evolution of residues in vine-shoots complying with *critical agricultural practices* and *good agricultural practices* 25was monitored at 1, 3 and 6 months of storage after pruning and, in the latter case, after being subjected to a toasting 26process. The dissipation of all the residues was demonstrated to be affected by storage duration and toasting. It was 27confirmed that converting vine-shoots into oenological additives for wines will not pose a risk to the consumer if good 28agricultural practices are applied.

29

30

31KEYWORD: dissipation, oenological additive, fungicides, storage, toasted, vine-shoots

зз**Introduction**

34Pruned vine-shoots are the most common waste produced in viticulture, with an estimated average world production of 351.95 x 10⁷ tons per year. Nevertheless, due to its lower value, this waste is generally left or burnt in the vineyard, which 36generates environmental problems, such as the emission of greenhouse gases or soil erosion due to the loss of organic 37material (Peralbo-Molina and Luque de Castro, 2013).

38However, the chemical composition of vine-shoots is characterized by some phenolic and aromatic compounds which 39have opened the possibility of using vine-shoots in viticultural and oenological practices. Specifically, aqueous extracts 40from vine-shoots have been proposed as vine biostimulants (Sánchez-Gómez *et al.*, 2016), since wines from vines 41sprayed with these extracts showed a "*feedback*" effect, with compounds from the vine being found in the wines, thus 42improving their chemical and sensorial profile. Recently, Cebrián-Tarancón *et al.* (2019) demonstrated the potential of 43using vine-shoots as oenological additives, due to their contribution to the aroma profile of wines when in contact with 44vine-shoot fragments. Vine-shoots from two varieties grown in the Castilla-La Mancha region (Spain), Cencibel and 45Airén,were stored for 6 months after pruning, granulated, toasted under specific conditions and added to wines at 46different times during winemaking. The herbaceous character of the resulting wines was significantly attenuated and the 47aromatic notes of dried fruits were increased. Moreover, in the different tasting tests, these wines were found to be of 48higher quality than the same wines that were not in any contact with vine-shoots (Cebrián-Tarancón *et al.*, 2019).

49Due to the great interest in this new use for vine-shoots, it is necessary to assess the possible presence of pesticide 50residues, since pesticide and especially fungicide treatment on vineyard crops is widespread. To ensure that such wines 51do not compromise consumer safety, the presence of fungicides residues must be below the maximum residue limits 52(MRLs), or better still, totally exempted.

53The control of pesticide residues, their evolution and transfer to plant material and food has been widely studied by 54several authors (Barba *et al.*, 1991; Marín *et al.*, 2003; Fernández *et al.*, 2005; Paya *et al.*, 2009), who analyzed the 55influence of different factors on the behavior of the pesticide residues. However, the authors did not find reference in 56the scientific literature to the presence of fungicide residues on vine-shoots. Consequently, the aim of this work was to 57determine the content of pesticide residues in vine-shoots when used as oenological additives. It was therefore

58necessary to develop a method for the extraction and analysis of several active fungicide materials, which were chosen 59from among the most commonly used in Spanish vineyards.

60 Materials and methods

611. Plant material: vine-shoots and treatments

63Vine-shoots from two *vinifera* cultivars were used: one from the white variety Airén (VIVC: 157) and the other from the 64red Cencibel (VIVC: 12350) varieties, also known as Tempranillo Tinto. Vine-shoots were pruned in vineyards from 65O.D. Mancha (Castilla-La Mancha, Spain). Fifty vines in each vineyard were selected, and 0.5 kg of vine-shoots were 66pruned on each one; i.e., a total of 25 kg collected per variety and vineyard.

67After that, they were grouped into 2 kg batches and divided into two groups: the first was stored intact (unfortified vine-68shoots) and the second was sprayed with 200 mL of the different fungicides (fortified vine-shoots). After that, they were 69stored intact in the dark and at room temperature (18 ± 3 °C) for 1, 3 and 6 months, during which time the vine-shoots 70were subject to analysis. Each trial was performed in duplicate.

71The active substances used were: trifloxystrobin, boscalid, kresoxim-methyl and penconazole, since these are the main 72fungicides used in the vineyards of the studied region. Table 1 shows the characteristics of these commercial fungicides. 73The fortified vine-shoots were treated after pruning with a pool of active substances under *critical agricultural* 74*practices* at a dosage ten times higher than the legal limit. At the time of pruning, the vine-shoots did not have any 75leaves and the plant was dormant, so the fungicides could not be translocated.

76The analyses of the fungicides were undertaken after treatment (Control) and after 1, 3 and 6 months of storage at room 77temperature of the intact vine-shoots. Moreover, a part of the vine-shoots which had been stored for 6 months was 78toasted. The unfortified vine-shoots, which were only in contact with fungicides during the vineyard treatments 79(considered as a *good agricultural practice*), were analysed after 6 months of storage.

80

81Table 1. Commercial fungicides characteristics and doses applied to vine-shoots 82under critical agricultural practices.

Commercial product	Active substances	Concentration	Form	Dosage
Flint	trifloxystrobin	50%	WG	13.75 g/hL
Collis	boscalid + kresoxim-methyl	20 + 10 %	SC	40 mL/hL
Topas	Topas penconazole		EC	35 mL/hL

83WG: water granulate; SC: concentrated suspension; EC: concentrated emusable

84

85For the analysis of fungicides, vine-shoots were pre-cut using pneumatic scissors then ground with a hammer mill $86(LARUS Impianti^{\circ})$, Skid Sinte 1000, Zamora, Spain) and sieved to a particle size of less than 10 mm.

872. Vine-shoot toasting procedure

88The fortified vine-shoots stored for 6 months and then ground were toasted in an air circulation oven (Heraeus[©] T6, 89Hanau, Germany) at 180 °C for 45 minutes according to Cebrián-Tarancón *et al.* (2018). Such practice is necessary 90when using vine-shoots as an oenological additive in winemaking (Cebrián-Tarancón *et al.*, 2019).

913. Fungicide residue analysis

923.1. Extraction

93

94Vine-shoot extractions were carried out according to the modified version of QuEChers method for the 95multiresidue analysis of grapes (Martínez *et al.*, 2015). 10 g of vine-shoot powder was shaken with 100 mL 96of acetonitrile for 1 min, then 4 g of magnesium sulphate, 1 g of sodium chloride, 1 g of sodium citrate 97dehydrate and 0.5 g sodium citrate sesquihydrate was added. This mixture was shaken vigorously for 1 min 98and centrifuged for 5 min at 3000 U/min. Finally, the separated extract was injected directly into the 99chromatograph after acidification with formic acid.

100

1013.2. Analysis of fungicides by HPLC-MS/MS

103The fungicide residue analysis was carried out according to Martínez *et al.* (2015), using an HPLC Agilent [®] 1041200 with a DAD detector (Agilent [®], Germany), which was coupled to a mass spectrometry system (ESI-105MS/MS) with a triple quadruple 6410B (Agilent [®], Germany) and equipped with a 120 EC-C18 Poroshell 106column (3.0×100 mm, $2.7 \mu m$). Acetonitrile and formic acid (99:1, v/v) were used as solvent A and 0.1 % 107formic acid in ammonium formate 2 mM (0.1:99.9, v/v) as solvent B. The elution gradient started at 20 % of

108phase A (80 % B) and increased linearly to 100 % of A in 10 min - recovering the initial conditions in 2 min. 109The volume of the injected sample was 5 μ L and the flow rate was 0.6 mL/min. Each sample was analysed in 110duplicate.

111MS/MS detection was carried out in positive mode under the conditions established by Oliva *et al.* (2018). 112The capillary voltage was set at 3000 V, while the source and desolvation temperatures were kept at 120 and 113350 °C respectively. A 1 l/min cone gas flow and 9 l/min desolvation gas flow were used. Multi-reaction 114monitoring (MRM) was used to detect all the compounds with a cycle time of 500 ms. All spectrometric 115parameters were individually optimised for each compound, as showed in Table 2.

116Table 2. Experimental parameters and spectrometric conditions used for the 117identification of fungicides.

Fungicides	Precursor Ion, m/z	Quantifier transition, m/z	Qualifier transition, m/z	Fragmentor, V
boscalid	[M+H] ⁺ 343	343 → 307	343 → 140	130
penconazole	$[M+H]^{+} 284$	284 → 70	284 → 159	70
kresoxim-methyl	$[M+H]^{+} 314.1$	314.1 → 206.1	$314.1 \rightarrow 267$	80
trifloxystrobin	[M+H] ⁺ 409	409 → 186	409 → 206	70

118

119In order to validate the method, we studied its linearity, precision (repeatability and reproducibility), recovery 120(accuracy) and the limits of quantification (LOQ) and detection (LOD). The LODs are the concentrations that produce 121an S/N of three, whereas the LOQs are based on an S/N of ten. Calibration curves of the compounds in the fungicide 122were made in triplicate at several concentrations (10, 20, 50, 100, 250, 500, and 1000 μ g/L) using individual pure 123acetonitrile solutions of the standard fungicides. Ten replicates of Cencibel vine-shoots at LOQ (0.01 μ g/kg) and 12410LOQ (0.1 μ g/kg) concentration levels were analysed under conditions of repeatability and reproducibility. 100 mL of 125the 100 μ g/L solutions of the calibration curve were added to 10 g of toasted vine-shoot powder. Extraction was carried 126out as described in section 3.1. Repeatability was evaluated by assaying ten replicate samples at the same concentration 127during the same day, and with the same instrument and operator. Reproducibility was evaluated by assaying ten 128replicate samples at the same concentration, but on different days, and with the same instrument, but with different 129operators. Precision was considered to be satisfactory when RSD \leq 20 % and recovery to be good with values of 70-130110 %. Results were expressed in mg of active substance per kilogram of vine-shoot.

131 Results

1321. Validity of the method for analysing vine-shoot fungicides

133Table 3 show the calibration curves of the vine-shoot fungicides, and that a good analytical linearity was obtained, with **134**correlation coefficients (R²) more or equal to 0.999 and a relative standard deviation (RSD) lower than 10.5 %.

135The recovery results are shown in Table 4; in all cases the test results were acceptable, with recoveries ranging from 13696% to 100% and $RSD \le 4\%$, which confirm that the method was sufficiently reliable for these four fungicides.

137Table 3. Calibration curves of vine-shoot fungicides (mg/kg).

Pesticide	Calibration curve	RSD (%)	\mathbb{R}^2
boscalid	y = 0.298x + 0.003	8.59	0.9990
penconazole	y = 1.155x + 0.020	5.37	0.9999
kresoxim-methyl	y = 0.354x + 0.009	10.43	0.9998
.: (I 1 '	F 400 + 0 0CC	5.65	0.0000
trifloxystrobin	y = 5.498x + 0.066	5.65	0.9999

138Concentration range (0.01-10 mg/kg)

139Table 4. Recovery (%) and relative standard deviation (RSD) under the repeatability and 140reproducibility conditions of the studied fungicides.

Parameters —	Recovery of repeatability					Recovery of reproducibility			
	%	% RSD	%	% RSD	%	% RSD	%		
mg/kg	LOQ: 0.01		10LOQ: 0.10		LOQ: 0.01		101		
boscalid	100.2	2.6	106.0	2.5	101.8	3.1	103.2		
penconazolee	96.0	4.0	108.7	2.8	99.0	4.5	107.2		
kresoxim-methyl	101.7	3.1	110.0	3.0	100.3	1.6	106.2		

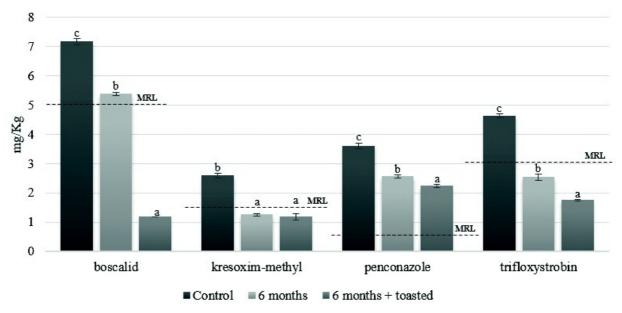
trifloxystrobin	101.8	2.7	110.5	2.5	100.0	4.0	106.7
111110111101111	101.0		110.0		100.0		100.

1412. Evolution of vine-shoot fungicide residues during storage

142The presence of fungicide residues in vine-shoots after pruning and 6 months of storage are shown in Table 5. The 143evolution of these residues in both vine-shoot varieties (Airén and Cencibel) was very similar, showing a considerable 144decrease in most of the fungicides with storage time. The higher residual value, 7.33 mg/kg, was observed in boscalid in 145the first fortified sample of the Cencibel analysis (Control); however, after 6 months its concentration decreased to 1465.29 mg/kg. In both varieties, trifloxystrobin and kresoxim-methyl levels decreased after storage by about 40 % and 14750 % respectively to below the maximum residue limit (MRL) established in grapes. MRL from the wine grape was 148used as a reference, as there is no data for fungicide in vine-shoots. On the other hand, penconazole decreased by 149approximately 30 % in both varieties, and boscalid decreased by nearly 25 %.

150In unfortified vine-shoots, the concentrations of detected fungicides were insignificant; in all cases they were below the 151LOQ (Table 5).

152Table 5. Evolution of fungicide residues in Airén and Cencibel vine-shoots during 6 months of 153storage.

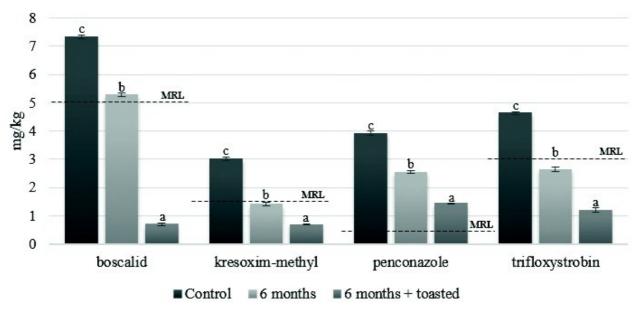

	_	Airén					
Fungicides [mg/kg] MRL				uf			
		Control	1 m	3 m	6 m	6 m	Control
boscalid	5	7.16 ± 0.11 d	6.26 ± 0.09 c	5.96 ± 0.05 b	5.38 ± 0.05 a	< LOQ	7.33 ± 0.08
kresoxim-methyl	1.5	$2.58 \pm 0.08 d$	2.21 ± 0.12 c	1.55 ± 0.10 b	1.25 ± 0.03 a	< LOQ	3.01 ± 0.00
penconazole	0.5	$3.60 \pm 0.10 \text{ b}$	2.78 ± 0.09 a	2.68 ± 0.05 a	2.56 ± 0.05 a	< LOQ	3.92 ± 0.08
trifloxystrobin	3	4.63 ± 0.07 d	3.32 ± 0.05 c	2.91 ± 0.06 b	2.53 ± 0.10 a	< LOQ	4.64 ± 0.0

154F = fortified vine-shoots, treated under *critical agricultural practices*; uf = unfortified vine-shoots, treated 155in vineyard under "good agricultural practices"; MRL = maximum permitted residue level in wine grapes 156(mg/kg). These data were taken from Regulation (EC) No. 396/2005, of the European Parliament of 23 157February 2005, on maximum residue levels of pesticides in or food and feed of plant and animal origin. 158For each storage time, different lower case letters indicate significant differences between Airén samples 159and capital letters indicate significant differences between Cencibel ones, according to the Tuckey test (p 160< 0.05). The mean values (p = 4) are shown with their standard deviation.

1613. Dissipation of fungicides on toasted vine-shoots

162Fungicide dissipation in toasted vine-shoots to be used as oenological additives was studied. The toasting process is 163necessary for enhancing certain compounds which are important for wine, especially in relation to their aroma 164compounds. It is therefore necessary to study the presence of pesticide residues in the fortified vine-shoots after this 165heat treatment.

166Figure 1 shows that when fortified Airén vine-shoots are toasted, the concentration of fungicides significantly decreases 167for some active substances, in contrast to the *critical agricultural practices* treatment (Control). The active substance 168boscalid was found to have the highest decrease in concentration by 84 %, a concentration of 1 mg/kg, which is five 169times lower than its MRL in wine grapes. Kresoxim-methyl levels decreased by 54 %, which was its initial 170concentration during storage, thus remaining constant with toasting, but with levels below the MRL. Compared to its 171initial concentrations, measured when vine-shoots were analysed after toasting, trifloxystrobin decreased by 62 %, thus 172also showing levels below the MRL in wine grape matrices. As regards penconazole, there was a 30 % decrease in its 173initial concentration with storage and a further 10 % with toasting. It must be taken into account that the vine-shoots had 174been fortified under *critical agricultural practices* (10 times more than the legal limit).


175

176Figure 1. Effect of toasting on Airén vine-shoot fungicide residues.

177Control = analysed immediately after treatment; 6 months = analysed after 6 months of storage after 178treatment; 6 months + toasted = analysed after 6 months of storage and toasting; MRL = maximum 179residue limit in wine grapes. For each substance, different letters indicate significant differences between 180sample times according to the Tuckey test (p < 0.05). The mean values (n = 4) are shown with their 181standard deviation.

182

183In Cencibel vine-shoots (Figure 2), the effect of toasting was more significant than in Airén. When vine-shoots were 184analysed after toasting, boscalid concentrations were found to have decreased by 90 % with respect to the Control 185(below 1 mg/kg). Kresoxim-methyl and trifloxystrobin decreased by 77 % and 74 % respectively in toasted vine-shoots 186with respect to the Control, and by around 50 % in both cases with respect to storage, with concentrations close to 1871 mg/kg. Similar to Airén, penconazole was above the MRL permitted in grapes for this compound (0.5 mg/kg), but its 188initial concentration decreased by up to 35 % with storage and a further 20 % with toasting.

189

190Figure 2. Effect of toasting on the Cencibel vine-shoot fungicide residues.

191Control = analysed immediately after treatment; 6 months = analysed after 6 months of storage after 192treatment; 6 months + toasted = analysed after 6 months of storage and toasting; MRL = maximum 193residue limit in wine grapes. For each substance, different letters indicate significant differences between 194sample times according to the Tuckey test (p < 0.05). The mean values (n = 4) are shown with their 195standard deviation. 196

197 Discussion

198In recent years, several studies have shown that the chemical composition of vine-shoots comprises a large number of 199high-value oenological compounds. The use of vine-shoots has therefore been proposed as a new oenological additive 200for modulating the chemical composition and sensory profile of wines (Cebrián-Tarancón *et al.*, 2019).

201It is well-known that the use of fungicide treatments in the grapevine agronomic cycle is common practice for the 202control of vine diseases. For this reason, the presence and evolution of their residues have been widely studied in grapes 203and wines (Barba *et al.*, 1991; Marín *et al.*, 2003; Fernández *et al.*, 2005; Paya *et al.*, 2009), but not in vine-shoots. 204However, if they are to be used as a new oenological tool, exhaustive research is necessary.

205It is important to note that this is the first study to focus on the evolution of fungicide residues in vine-shoots, which 206makes it difficult to compare the results with those of other studies from the literature. Other alternative oak wood 207products (chips and cubes, etc.) are used during the winemaking process, but the presence of these type of active 208substances has not been previously referenced. This makes it more complicated to compare our results with other wood 209oenological products used.

210In this study, fungicide application was carried out after pruning; i.e., in winter when the vine was dormant and 211biological activity was less intense than during the growing season when treatments are carried out (leaves and grapes 212present). In some studies, some fungicides applied to grapes in the field during the summer period were found to have 213dissipated before harvest (Nadeem *et al.*, 2020; Yang *et al.*, 2020). In the present study, however, there was a higher 214concentration of the studied active substances (trifloxystrobin, boscalid, kresoxim-methyl and penconazole) in the vine-215shoots to which they had been applied, since there was no translocation through the plant, and they could therefore not 216be distributed in order to be eliminated afterwards (as would have been the case if the treatments had been applied to the 217grapes). Moreover, under *good agricultural practices*, the last fungicide treatment is normally applied to vines during 218the summer months. However, as our study focused on the use of vine-shoots as an oenological additive, pruning was 219carried out in January, after which the vine-shoots were stored for 6 months and then toasted before use.

220Once the active substances were isolated, the method was validated according to SANTE (2019) guidelines. The results 221obtained showed that the validated methodology was sufficiently reliable and accurate for the analysis of the fungicide 222residues in the vine-shoots. It was important to study the behaviour of the four active substances over storage time (1, 3 223 and 6 months). The fungicide treatments on the vine-shoots were carried out according to *critical agricultural practices* 224 in terms of compound concentrations and application of active substances during plant dormancy.

225The results showed a tendency for the fungicide residues to decrease over time, reaching their lowest levels after 6 226months - the most reduced active substance being boscalid. This time point agrees with the one set by Cebrián-Tarancón 227et al. (2017), because it is when the highest content of high-value oenological compounds was reached. Therefore, if 228under these unfavourable conditions, vine-shoots did not show any residues from these fungicides, then they will likely 229show similar behaviour when treatment is applied in accordance with *good agricultural practices*.

230Cebrián-Tarancón *et al.* (2017), also established that vine-shoots to be used as an oenological additive should be 231toasted; therefore, fungicide behaviour also needs to be monitored. While the post-pruning storage of 6 months clearly 232reduced the initial concentration of the active substances, the amount of residues was even lower when the vine-shoots 233were then subjected to a toasting process (Figures 1 and 2). Especially significant was the case of boscalid, whose 234concentration fell by up to 70 % in Cencibel and 60 % in Airén after toasting.

235 Conclusions

236The results of this work confirm a decrease in the levels of boscalid, kresoxim-methyl, penconazole and trifloxystrobin 237residues in Airén and Cencibel vine-shoots from vineyards treated under *critical agricultural practices*, stored for 6 238months and toasted. Therefore, these data indicate that the use of vine-shoots as an oenological additive for enhancing 239and differentiating wines is not likely to expose consumers to the four studied fungicides.

240 Acknowledgements

241Thank you very much for the financial support of the Spanish Ministry of Economy and Competitively-FEDER to 242Project AGL2015-65133-C2-1-R. 243

244References

269

270

271272

273

274

275

276

- Barba, A., Cámara, M. A., García, S. N., Sanchez-Fresneda, C., de Hierro N. L., & A. Acebes. (1991).
 Disappearance of bromopropylate residues in artichokes, strawberries and beans. *Journal of Environmental Science and Health*, *Part B*, 26, 323-332. https://doi.org/10.1080/03601239109372738
- Marín, A., Oliva, J., Garcia, C., Navarro. S., & Barba, A. (2003). Dissipation rates of cyprodinil and fludioxonil in lettuce and table grape in the field and under cold storage conditions. *Journal of Agricultural and Food Chemistry*, 51, 4708-4711. https://doi.org/10.1021/jf021222e
- Cebrián-Tarancón, C., Sánchez-Gómez, R., Salinas, M. R., Alonso, G. L., & Zalacain, A. (2017). Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. *Industrial Crops and Products*, 109, 730-736. https://doi.org/10.1016/j.indcrop.2017.09.037
- Cebrián-Tarancón, C., Sánchez-Gómez, R., Alonso, G. L., Salinas, M. R., Oliva, J., & Zalacain, A. (2018).
 Toasted vine-shoot chips as enological additives. *Food Chemistry*, 263, 96-103.
 https://doi.org/10.1016/j.foodchem.2018.04.105
- Cebrián-Tarancón, C., Sánchez-Gómez, R., Cabrita, M. J., García, R., Zalacain, A., Alonso, G. L., & Salinas,
 M. R. (2019). Winemaking with vine-shoots. Modulating the composition of wines by using their own resources. *Food Research International*, 121, 117-126. https://doi.org/10.1016/j.foodres.2019.03.032
- Martínez, G., Morales, A., Maestro, A., Cermeño, S., Oliva. J., & Barba, A. (2015). Determination of nine fungicides in grape and wine using QuEChERS extraction and LC/MS/MS analysis. *Journal of AOAC International*, 98, 1745-1751. https://doi.org/10.5740/jaoacint.14-216
- Oliva, J., Martínez, G., Cermeño, S., Motas, M., Barba, A. & Cámara, M.A. (2018). Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. *European Food Research and Technology*, 244, 1083-1090. https://doi.org/10.1007/s00217-017-3031-y
- 8. Fernández, M.J., Oliva, J., Barba, A., & Cámara, M. A. (2005). Effects of clarification and filtration processes on the removal of fungicide residues in red wines (var. Monastrell). *Journal of Agricultural and Food Chemistry*, 53, 6156-6161. https://doi.org/10.1021/jf0580162
 - **9.** Nadeem, M., Randhawa, M.A., Butt, M.S., & Asgher, M. (2020). Probing the decay modelling of fungicides on grape varieties. *Pakistan Journal of Agricultural Sciences*. 57, 2, 553-560.
 - 10. Yang, M., Luo, F., Zhang, X., Zhou, L., Lou, Z., Zhao, M., & Chen, Z. (2020). Dissipation and Risk Assessment of Multiresidual Fungicides in Grapes under Field Conditions. *Journal of Agricultural and Food Chemistry*, 68, 4, 1071-1078. https://doi.org/10.1021/acs.jafc.9b06064
 - 11. Paya, P., Oliva., J., & Barba, A. (2009). Disappearance of fungicides in fresh and processed agricultural product. Influence of the elaboration techniques. *Fungicides: Chemistry, Environmental Impact and Health Effects*. 335-360.
- 12. Sánchez-Gómez, R., Zalacain, A., Pardo, F., Alonso G. L., & M. R. Salinas., (2016). An innovative use of vine-shoots residues and their "feedback" effect on wine quality. Innovative Food Science and Emerging Technologies, 37, 18-26. doi: 10.1016/j.ifset.2016.07.021.
- 13. SANTE (2019). European Commission Health and Consumer Protection Directorate-General.
 SANTE/12682/2019. Brussels, Belgium.
- 14. Peralbo-Molina, T., & Luque de Castro, M.D. (2013). Potential of residues from the Mediterranean agriculture
 and agrifood industry. *Trends in Food Science and Technology*. 2013, 32, 16-24.
 https://doi.org/10.1016/j.tifs.2013.03.007