IDENTIFICATION OF PROCYANIDIN A2 IN GRAPE AND WINE OF VITIS VINIFERA L. CV. MERLOT NOIR AND CABERNET SAUVIGNON

IDENTIFICATION DU PROCYANIDOLE A2 DANS LE RAISIN ET LE VIN DE VITIS VINIFERA L. CV. MERLOT NOIR ET CABERNET SAUVIGNON.

Nathalie VIVAS de GAULEJAC¹, N. VIVAS¹*, C. ABSALON² and M.F. NONIER¹

¹Tonnellerie Demptos détaché au CESAMO (Centre d’Etude Structurale et d’Analyse des Molécules Organiques) Université Bordeaux I 351, cours de la Libération, 33405 Talence
²CESAMO (Centre d’Etude Structurale et d’Analyse des Molécules Organiques) Université Bordeaux I 351, cours de la Libération, 33405 Talence

Abstract: Procyanidin A2 was identified in grapes and wines of Cabernet Sauvignon and Merlot noir. But the quantification show a limited presence of this compounds in wine, near the mg/L. In this concentration the procyanidin A2 was not able to participate to the bitterness character of red wines.

Résumé : En utilisant différentes méthodes, nous avons identifié le procyanidole A2 dans des extraits partiellement purifiés de pellicules, de pépins et de vins de Merlot noir et de Cabernet Sauvignon. La particularité de ce procyanidole est de posséder outre une liaison C4-C8, une seconde liaison éther C2-O-C7. Dans la littérature de nombreux auteurs ont attribué aux formes condensées des procyanidoles, comportant une ou plusieurs liaisons de ce type, de l’amertume. Il apparaît malgré une présence constante, une faible teneur de ce procyanidole dimère, voisin du mg/L dans les vins. À ces valeurs, le procyanidole A2 ne peut pas participer au caractère amer des vins rouges.

Key words: grapes, wines, procyanidins A2, identification, quantification, bitterness

Mots clés : raisins, vins, procyanidoles A2, identification, quantification, amertume

INTRODUCTION

Proanthocyanidins represent the major part of the total polyphenol extract in hydroalcoholic solutions (RIBÉREAU-GAYON, 1969; VIVAS et al., 1994; FREITAS et al., 1996; VIVAS et al., 1996b). Structural units of these condensed tannins are flavan-3-ols: (+)-catechin, (-)-epicatechin for procyanidins of seeds and wines and (+)-gallocatechin, (-)-epigallocatechin for prodelphinidins of skins and wines (PRIEUR et al., 1994; SOUQUET et al., 1996; MOUTOUNET et al., 1996). The most common and well known class of proanthocyanidins is the B-series corresponding to a linkage in the C4-C6 or the C4-C8 position (FLETCHER et al., 1977). The second class, less studied, is the A-series, which corresponds to a linkage in the C4-C8 position with an additional C2-O-C7 ether linkage (JACQUES et al., 1974). For comparison, the A2¹ and B2² structures were represented in the figure 1. B2 was chosen as a model on account this similarity of it’s structural units (epicatechin-(4b-8)-epicatechin) with A2. Concerning the presence of this last series in grapes and wines, only SALAGOÏTY and BERTRAND (1984) present the identification of a chromatographic peak by comparison of retention time with a reference considered as a pure A2 compound. Thus occurrence of the A-series procyanidins in grapes and wines requires a new investigation.

On the other hand, for several authors, like ROOYEN and REDELINGHUYS (1983), procyanidin A2 is a bitter substance with a very low threshold value, near 2 mg/L in water. In grapes, other fruits and in wine the astringency substances are well known (HASLAM AND LILLEY, 1988; TANAKA et al., 1994) but the phenolic compounds responsible of bitterness are actually unknown.

The aim of this preliminary investigation was to confirm the presence of procyanidins A2 in grapes and wines, to quantify them and to evaluate the potential participation of their structure in the bitter taste of wine.

MATERIALS AND METHODS

I - ORIGIN OF GRAPES AND WINE SAMPLES

The grape varieties are selected for their importance in the Bordeaux vineyard. For Merlot noir and Cabernet...
Sauvignon we selected different soils: Pessac, Léognan, Médoc, Haut-Médoc (Pauillac), Pomerol and Entre-Deux-Mers. Parcels were chosen for the similarity of the vine ages (35 years ± 5), the same density of plantation (5,500 plants per ha), a comparable production (for Merlot noir near 45 hl/ha and for Cabernet sauvignon near 50 hl/ha) and similar viticultural techniques. In this study we analyse only the grapes the day of harvest. The wines of these different soils and of the two varieties were vinified separately in 50 hl stainless steel tanks, with the same vinification conditions. Analysis were done 15 days after the end of malolactic fermentation.

II - ISOLATION AND CHARACTERISATION OF REFERENCE PROCYANIDINS

The pure procyanidin A2 was provided from horse chestnut shells (*Aesculus hippocastanum*) in the conditions described by VIVAS et al. (1996a). Other procyanidins of B series including B1-B8 dimers and some trimers were provided by FREITAS (University of Porto, Portugal).

III - EXTRACTION AND PURIFICATION OF PROCYANIDIN FRACTION FROM RED GRAPE VARIETIES AND CORRESPONDING WINES

Skins and seeds have been separated from the pulps. They were weighed, freeze-dried, reduced to powder and then shaked separately for two minutes in a blender with 100 mL of hydroalcoholic solution (Ethanol 120 mL/L, pH 3.2). Medium was agitated during 6 h then centrifuged for 20 min. (x 4000 g). Supernatant was filtered to eliminate the insoluble particles (millipore filter, 0.45 mm). The wines’ samples were filtered through a 0.45 mm membrane before direct injection.

For preparation of the low pressure chromatography samples, 4 g of powder were ground for 2 min. in a blender with 10 mL of ethanol 950 mL and 10 mL aqueous solution containing 1 g/L of NaHSO₃ (antioxidizing agent). We added 20 mL of chloroform and mixed for an additional minute. The remaining solution was then centrifuged for 10 min. (x 4 000 g). Two phases were separated out by an interface constituted of the solid material. The green lower phase (containing chloroform, lipids, pigments...) was eliminated. The yellow superior phase (hydroalcoholic solution) containing the phenolic constituents was recovered. This extraction was repeated six times on the powder remaining in the tube of centrifugation. All the hydroalcoholic extracts were collected and were evaporated to remove ethanol (T ≤ 30 °C). The aqueous solution obtained was filtered. 20 mL of this solution or wine was extracted with ethyl acetate (6 x 20 mL). The organic phases were collected and the solvent was evaporated (T ≤ 30°C). The extracts obtained were soluble in 5 mL of methanol before being injected into a low pressure column.

The samples were injected into a low pressure column (1.6 x 35 cm) of gel TSK Toyopearl HW-40(S). They were eluted with methanol at a flow rate of 0.8 mL/min. The fractions containing the procyanidin oligomers were collected. The solvent was completely evaporated (T ≤ 30°C). The extracts were soluble in 0,5 mL of methanol before being analysed by HPLC.

IV - HPLC ANALYSIS

20 µL of the extract were injected onto two BECKMANTM ultrasphere ODS C18 (250 x 46 mm; 5 µm) columns in series at 20 °C (± 1 °C), eluted with a flow rate of 1 mL/min. with the composition of two solvents: solvent A was formic acid: water (2.5:97.5, v/v), solvent B was solvent A: acetonitrile (20:80, v/v). The analytical method used was very similar to the proce-
dure described by RICARDO DA SILVA et al. (1991). The gradient conditions were:

<table>
<thead>
<tr>
<th>temps (min)</th>
<th>0</th>
<th>5</th>
<th>90</th>
<th>95</th>
<th>100</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de A</td>
<td>93</td>
<td>93</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>% de B</td>
<td>7</td>
<td>7</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>7</td>
</tr>
</tbody>
</table>

Detection was monitored at O.D. 280 nm with a diode area detector. The levels of procyanidin dimers were quantified using standard curves developed from reference standards.

V - THIOLYSIS WITH TOLUEN-α-THIOL

The main compounds were collected by repeated injection and HPLC separation. The solvent were evaporated and the residue was dissolved in a sealed tube with 40 µL of toluen-α-thiol. The mixture was incubated at 100 °C in a bath-oil during 1 h to obtain the corresponding flavanol units in thioethers forms. After evaporation of toluene, we added 30 µL of RaNi (H2 for 2 min.) in the dried extract and incubated at 50 °C during 1 h, for regenerated natif flavanols. The medium was then analysed by HPLC (Tr: catechin 29.5 min., epicatechin 48.6 min.).

VI - BATE-SMITH REACTION

Classical BATE-SMITH reaction (1972) were performed and the coloured compounds produced were isolated by liquid-liquid extraction with isoamylic alcohol.

VII - THRESHOLD DETERMINATION AND WINE TASTING

Procyanidins A2 and B2 threshold values was determined by a triangle tasting using a 17 people panel, all professional tasters and enologists. The value at 50 p. cent of the panel S50 were performed in hydro-alcoholic media with a composition similar than the one in wines (120 mL/L of ethanol, 5 g/L of tartaric acid, KOH N for pH 3.5), in a non-bitter and in a bitter wine. In addition all the wines of our experiments in order to evaluate the general qualities of the wines and especially the gustative aspect. The general quality level was evaluated by grades given the panel.

RESULTS AND DISCUSSION

I - IDENTIFICATION OF PROCYANIDINS A2 IN GRAPES AND WINES

Figure 2 present a characteristic chromatogram of the fraction containing procyanidins from grapes extract and wines. Identification of the main peaks was attempted using two procedures. Firstly we made a Bate-Smith reaction on the collected compounds to confirm the proanthocyanidin nature. Secondly, thiolysis and desul-
Fig. 2 - Mass spectrum of B2 and A2 procyanidins.

LC-MS experiment was realised by electrospray in negative mode at 100 V, after reverse phase HPLC fractionation. Spectra were realised at the top of each chromatographic peak, recorded by diode area detector at O.D. 280 nm. RDA, retro Diels-Alder.

Fig. 2 - Spectre de masse des procyanidoles B 2 et A2

L’expérience de LC-MS est réalisée par électrospray en mode négatif à 100 V, après séparation par HPLC en phase inverse. Les spectres sont réalisés au sommet de chaque pic chromatographique, enregistré par détecteur à barette diode à 280 nm. RDA, retro Diels-Alder.

TABLE 1

Concentration of procyanidins dimers A2 and B in grapes (seeds, skins) of *Vitis vinifera* L. Cabernet sauvignon and Merlot noir

(Results are in mg/g of dried weight, average of 5 samples for each variety)

<table>
<thead>
<tr>
<th>Procyanidins</th>
<th>Merlot noir</th>
<th>Cabernet Sauvignon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seeds</td>
<td>Skins</td>
</tr>
<tr>
<td>A2</td>
<td>4.7 ±1.8</td>
<td>3.2 ±1.4</td>
</tr>
<tr>
<td>B1</td>
<td>72.1 ±23.5</td>
<td>0.8 ±0.3</td>
</tr>
<tr>
<td>B2</td>
<td>188.3 ±31.5</td>
<td>8.9 ±2.6</td>
</tr>
<tr>
<td>B3</td>
<td>66.8 ±21.3</td>
<td>0.2 ±0.1</td>
</tr>
<tr>
<td>B4</td>
<td>104 ±17.5</td>
<td>0</td>
</tr>
<tr>
<td>B5</td>
<td>17.9 ±4.2</td>
<td>1.4 ±0.7</td>
</tr>
<tr>
<td>B6</td>
<td>24.6 ±5.7</td>
<td>0</td>
</tr>
<tr>
<td>B7</td>
<td>14.5 ±3.8</td>
<td>0</td>
</tr>
<tr>
<td>B8</td>
<td>12.1 ±2.1</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE II
Concentration of procyanidins dimers A2 and B in wines of *Vitis vinifera* L., Cabernet Sauvignon and Merlot noir
(results are in mg/L, average of 5 samples for each varieties)

<table>
<thead>
<tr>
<th>Procyanidins</th>
<th>Merlot noir</th>
<th>Cabernet Sauvignon</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>1 ±0.3</td>
<td>0.9 ±0.2</td>
</tr>
<tr>
<td>B1</td>
<td>21.6 ±3.2</td>
<td>10.9 ±2.7</td>
</tr>
<tr>
<td>B2</td>
<td>50.7 ±12.8</td>
<td>21.2 ±7.5</td>
</tr>
<tr>
<td>B3</td>
<td>8 ±2.4</td>
<td>4 ±1.3</td>
</tr>
<tr>
<td>B4</td>
<td>8 ±1.7</td>
<td>2.4 ±1.0</td>
</tr>
<tr>
<td>B5</td>
<td>9.5 ±2.6</td>
<td>6.4 ±1.9</td>
</tr>
<tr>
<td>B6</td>
<td>3.7 ±1.1</td>
<td>3.1 ±1.1</td>
</tr>
<tr>
<td>B7</td>
<td>2.6 ±1.1</td>
<td>1 ±0.3</td>
</tr>
<tr>
<td>B8</td>
<td>1.3 ±0.6</td>
<td>0.6 ±0.2</td>
</tr>
</tbody>
</table>

TABLE III
Procyanidins A2 and B2 threshold in hydroalcoholic solution and in different red wines
(1: hydroalcoholic solution; 2: non-bitter wine; 3: bitter wine; results are expressed in mg/L)

<table>
<thead>
<tr>
<th>Procyanidin</th>
<th>A2</th>
<th>B2</th>
<th>Threshold</th>
<th>Caracters</th>
<th>Astringency</th>
<th>Bitterness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>35</td>
<td>nd</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>nd</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

Finally, the mass spectra experiments confirmed that it was a procyanidin dimer of A-series. These results permit to confirm the A2 presence in grapes and wines. A recent LC/MS experiment, with electrospray ionisation source, confirmed this attribution (figure 2).

II - QUANTIFICATION OF PROCYANIDINS A2. COMPARISON WITH OTHER PROCYANIDINS DIMERS OF B-SERIES

In tables I and II we resort the quantification, procyanidins B and A2. If some procyanidins B were localised only in parts of the grapes (B4, B6, B7, B8, only in seeds), A2 was identified with consistencies in all samples of skins and seeds. Grape seeds and skins present procyanidins A2 in equivalent quantities in Cabernet Sauvignon and in Merlot noir (5 mg/g in seeds, 3 mg/g in skins). All red wines analysed in this study show a concentration of A2 procyanidin near 1 mg/L. So this dimer is a very limited compound compared to B series in these varieties and in it is corresponding wines.

VI - THRESHOLD DETERMINATION (table III)

Bitter sensation of A2 was confirmed by these experiments. Also, in hydroalcoholic solution, A2 threshold is of 4 mg/L, near the threshold published by ROOYEN and REDELINGHUYS (1983). In the same condition, we found in B2 a threshold of 35 mg/L. So additional ether bonds are responsible for the decrease of gustative perception of the molecule and modifies it is tasty character. The low concentration of procyanidins A2 does not permit to influence bitterness of red wine. But A2 can give to non-bitter wines a typical bitterness.

CONCLUSION

In this study we have demonstrated the presence of procyanidins A2 in Cabernet sauvignon and Merlot noir grapes and wines. But this compound was found at a very limited concentration in grapes (5 to 3 mg/g respectively in seeds and skins) and wines (1 mg/L). At this concentration A2 is unable to participate to the bitterness of red wines. But the extensive knowledge...
of the A series procyanidins in *Vitis vinifera* L. can permit to conclude definitively this hypothesis.

Acknowledgements: We are grateful to Dr. FREITAS V.A. for providing dimers and trimer procyanidins and to the company MICROMASS™ Society for the LC/MS electrospray experiment.

REFERENCES


---

Nathalie VIVAS de GAULEJAC et al.

reçu le 1er février 2001

accepté pour publication le 15 février 2001